Pivotal role of microRNAs in cardiac development and heart diseases
WEI Cong, HU Bing, SHEN E
Department of Ultrasound in Medicine, Shanghai Jiaotong University Affiliated Sixth Peoples Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, China. E-mail: shene1001@hotmail.com
Abstract:MicroRNAs (miRNAs) are non-coding small RNAs, which bind to the 3'-UTR of target mRNAs and negatively regulate the gene expression. Accumulating evidence demonstrates that miRNAs are involved in many biological processes such as embryo development, cell proliferation, differentiation, apoptosis and tumorigenesis. Heart development and heart diseases are complex processes controlled by various signaling pathways. Recent researches indicate the importance of miRNAs in the process of cardiac development and heart diseases. In this review, the role of miRNAs in cardiac development and the pathogenesis of heart diseases are overviewed. The insight into the regulating miRNAs will significantly expand the cardiovascular therapeutic strategies beyond classical pharmacology.
魏聪, 胡兵, 申锷. MicroRNAs在心脏发育和疾病中的作用[J]. 中国病理生理杂志, 2011, 27(3): 611-615.
WEI Cong, HU Bing, SHEN E. Pivotal role of microRNAs in cardiac development and heart diseases. Chin J Pathophysiol, 2011, 27(3): 611-615.
Callis TE, Wang DZ. Taking microRNAs to heart[J]. Trends Mol Med, 2008, 14(6):254-260.
[2]
van Rooij E, Liu N, Olson EN. MicroRNAs flex their muscles[J]. Trends Genet, 2008, 24(4):159-166.
[3]
Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nat Genet, 2006, 38(2):228-233.
[4]
Takaya T, Ono K, Kawamura T, et al. MicroRNA-1 and microRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells[J]. Circ J, 2009, 73(8):1492-1497.
[5]
Zhao Y, Ransom JF, Li A, et al. Dysregulaion of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J]. Cell, 2007, 129 (2):303-317.
[6]
Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis[J]. Nature, 2005, 436(7048):214 -220.
[7]
Liu N, Bezprozvannaya S, Williams AH, et al. MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart[J]. Genes Dev, 2008, 22(23):3242-3254.
[8]
Cheng YH, Liu XJ, Zhang S, et al. MicroRNA-21 protects against the H2O2 -induced injury on cardiac myocytes via its target gene PDCD4[J]. J Mol Cell Cardiol, 2009, 47(1):5-14.
[9]
Lankat-Buttgereit B, Gke R. The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation[J]. Biol Cell, 2009, 101(6):309-317.
[10]
van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure[J]. Proc Natl Acad Sci USA, 2006, 103 (48):18255-18260.
[11]
Cheng Y, Ji R, Yue J, et al. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy?[J]. Am J Pathol, 2007, 170(6): 1831-1840.
[12]
Carè A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy[J]. Nat Med, 2007, 13(5):613-618.
[13]
Sayed D, Hong C, Chen IY, et al. MicroRNAs play an essential role in the development of cardiac hypertrophy[J]. Circ Res, 2007, 100(3):416-424.
[14]
Ikeda S, He AB, Kong SW, et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes[J]. Mol Cell Biol, 2009, 29(8):2193-2204.
[15]
van Rooij E, Sutherland LB, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA[J]. Science, 2007, 316(5824):575-579.
[16]
Callis TE, Pandya K, Seok HY, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice[J]. J Clin Invest, 2009, 119(9):2772-2786.
[17]
Lin ZQ, Murtazaa I, Wang K, et al. MiR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy[J]. Proc Natl Acad Sci USA, 2009, 106(29):12103- 12108.
[18]
Horie T, Ono K, Nishi H, et al. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes[J]. Biochem Biophys Res Commun, 2009, 389(2):315-320.
[19]
Duisters RF, Tijsen AJ, Schroen B, et al. MiR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling[J]. Circ Res, 2009, 104(2):170-178.
[20]
van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis[J]. Proc Natl Acad Sci USA,2008, 105(35): 13027-13032.
[21]
Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts[J]. Nature, 2008, 456 (7224):980-984.
[22]
Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miRNA-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2[J]. Nat Med, 2007, 13(4):486-491.
[23]
Girmatsion Z, Biliczki P, Bonauer A, et al. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation[J]. Heart Rhythm, 2009, 6(12): 1802-1809.
[24]
Xiao J, Luo X, Lin H, et al. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts[J]. J Biol Chem, 2007, 282(17):12363-12367.
[25]
Luo X, Lin H, Pan Z, et al. Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart[J]. J Biol Chem, 2008, 283(29): 20045-20052.